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ABSTRACT 
Most traditional antenna measurement techniques 
presume that the antenna under test (AUT) is accurately 
aligned to the mechanical axes of the test range.  
Sometimes, however, it is not possible to achieve such a 
careful antenna alignment [1].  In these cases, standard 
post processing techniques can be used to accurately 
correct antenna-to-range misalignment.  Alternatively, 
similar results may be obtained by approximation in the 
form of piecewise polynomial interpolation.  When 
carefully employed, this method will result in only a 
small increase in uncertainty, but with a significant 
reduction in computational effort. 

This paper describes this far-field alignment correction 
method, which is closely related to standard active 
alignment correction methods [2].  This paper then 
proceeds to use numerical simulation as well as actual 
range measurements to demonstrate the effectiveness of 
this method.  Finally, the utility of this technique in the 
presentation of far-field antenna pattern functions is 
illustrated. 
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1. Introduction 

Generally, the purpose of a range measurement is to 
characterize the radiation pattern of an AUT at a very 
great, or infinite, distance with reference to an angular or 
other co-ordinate set.  In principle, the AUT should be 
accurately aligned to the primary axes of the range.  
However, in practice, there might be considerable 
difficulties with achieving such an accurate alignment.  
These difficulties may be caused by the size or mass of 
the test antenna, or perhaps by a limitation in the 
mechanical mounting that might result in a large, 
cumbersome, or expensive structure.  Fortunately, the 
relationship between the frame of reference associated 
with the antenna, and that of the range can usually be 
acquired.  Providing this is the case, any misalignment 
can be corrected for within the data processing chain and 
a number of techniques exist that can be harnessed for 
this purpose [1,4].  These techniques generally use modal 
expansion, which is rigorous for the case of a band-

limited spectrum function, and the necessary processing is 
intensive [2, 4]. 

Another approach (the purpose of this paper) is to 
consider using approximation in a generalised vector 
isometric rotation strategy that uses two-dimensional 
interpolation [3]. Often, the use of approximation when 
implementing alignment corrections has been avoided due 
to concerns of slightly degraded accuracy.  Typically, it 
has only been used in cases where the alignment data was 
known and rigorous equivalents were unavailable (c.f. 
cylindrical near-field measurements), where accuracy 
requirements were not paramount, or during the 
visualisation of measurements that were known to have 
an antenna-to-range misalignment.  

The latter case primarily involves optimizing the 
agreement attained between respective measurements by 
simply varying the amount of rotation being applied to 
one or the other pattern prior to plotting.  Normally, this 
would be accomplished manually.  However, since vector 
isometric rotations can be implemented efficiently 
through the use of approximation, it is appropriate for 
inclusion within the optimisation loop of a genetic 
algorithm.  Thus, this would enable pattern comparisons 
to be made even in cases where antenna-to-range 
alignment information was known only approximately, or 
perhaps even completely absent. 

The following sections aim to describe the alignment 
correction technique, verify its application through 
numerical simulation and actual range measurements, 
before concluding with an illustration of its utility within 
an alignment optimising genetic algorithm. 
 

2. Overview of Antenna Pattern Rotation 

Transformation matrices are matrices that multiply a point 
vector to produce a new point vector.  A series of 
transformation matrices may be concatenated into a single 
matrix through matrix multiplication.  A transformation 
matrix may represent each of the operations of translation, 
scaling, and rotation.  However, if [A] is a three by three 
orthogonal, normalised, square, matrix it may be used to 
specify an isometric rotation that can be used to relate two 
frames of reference, i.e. two co-ordinate systems.  We 
may write that a point in one frame of reference can be 



specified in terms of a point in the other frame of 
reference using, 
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Here primed co-ordinates are used to differentiate 
between the respective systems.  However, if the rotation 
is assumed to comprise an x-, y-, and z-rotation where the 
rotations have been applied in that order, then [A] can be 
obtained from, 
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Here, c and s denote the trigonometric functions cosine 
and sine respectively.  Crucially, although almost any 
number of different angular definitions are available for 
describing the relationship between the respective co-
ordinate systems, they can be related, i.e. equated, to one 
another via the direction cosine matrix.  In the case of 
applying a scalar (no polarization change) rotation to an 
antenna pattern, the algorithm would be as follows: 

1. Calculate the equivalent triad of Cartesian direction 
cosines (u,v,w) corresponding to each of the points 
in the pattern, i.e. directions in the raster grid of 
sampling nodes which is usually a grid of spherical 
angles e.g. a plaid, monotonic and equally spaced 
grid of – say – θ and φ angles. 

2. Transform the triad of direction cosines, using 
equations (1) and, for example, (2) to compute the 
equivalent direction cosines in the other rotated 
frame of reference (u’,v’,w’). 

3. Calculate the equivalent spherical angles in the 
second rotated co-ordinate system.  Note: this will 
generally represent an irregular non-rectilinear co-
ordinate system. 

4. Approximate the new rotated pattern function from 
the original data set using which ever interpolating 
scheme is best suited to the underlying pattern 
function, e.g. bi-linear, bi-cubic, etc.. 

5. Plot new data using regular raster grid of spherical 
angles. 

This generic process can be used to rotate an antenna 
pattern that has been tabulated in any of the conventional 
far-field plotting co-ordinate systems, e.g. azimuth over 
elevation, elevation over azimuth, polar spherical, true-
view, direction cosine, etc. [5].  Clearly, this can be 
repeated for each polarisation component. 

In contrast, a vector rotation (as required to implement an 
alignment correction to an antenna measurement) changes 
both the pattern and polarisation.  Unfortunately, the by-

product of a scalar rotation is that the reference, i.e. 
observing, polarisation is rotated with the pattern by 
exactly the same amount as the pattern has been rotated – 
after all we did nothing to the polarisation, we merely 
rotated the pattern so it had no alternative but to be 
rotated with the pattern.  Thus, an inverse rotation must 
be applied to the polarisation basis in order that the 
observing polarisation can be returned to its original state.  
Fortunately, this can be accomplished simply by utilizing 
the inverse of equation (1) to correct the field 
components.  In summary, the algorithm for applying a 
vector rotation to an antenna pattern can thus be 
expressed as follows: 

1. Resolve the far-field pattern (e.g. initially resolved 
onto a Ludwig III polarisation basis) onto a 
Cartesian polarisation basis. 

2. Apply a scalar rotation to each of the three 
polarisation patterns (separately) using the algorithm 
detailed above. 

3. Apply an inverse isometric rotation to the 
interpolated field components to complete the vector 
isometric rotation. 

4. Resolve the far-field pattern back onto the desired 
polarisation basis (e.g. Ludwig III definition). 

 

3. Preliminary Simulated Results 

In order to verify the post-processing technique described 
above, simulated far-field patterns were obtained where a 
radiator was aligned to the axes of the simulation space, 
and where it was rotated with respect to the simulation 
space.  The purpose of this was to test the vector 
isometric rotation by taking the rotated data set and 
computing the nominally aligned data set that could then 
be compared with the nominally aligned reference set.  To 
this end, a proprietary three dimensional, full wave 
computational electromagnetic (CEM) solver employing 
the finite difference time-domain (FDTD) method was 
used to solve for the electric and magnetic fields.  In this 
case, a simple open-ended rectangular waveguide 
(OEWG) section, excited by the fundamental TE10 mode 
was modelled twice, once when the axes of the OEWG 
were aligned with the axes of the simulation space, and 
again with the OEWG section having been rotated 
through 30° about the x-axis of the space.  This can be 
seen illustrated schematically in Figure 1. 

The choice of an elementary OEWG section was made as 
this was both simple to model and the low gain nature of 
the device enables pattern comparisons to be made over 
very nearly the complete far-field sphere. 



 
Figure 1 – Nominally aligned waveguide section (left) 

& rotated waveguide section (right). 

The Cartesian components of the far-field patterns of 
these simulations can be seen presented in Figure 2, 
Figure 3, and Figure 4 plotted using a regular azimuth 
over elevation co-ordinate system over the complete far-
field sphere.  These have been plotted together with the 
alignment corrected patterns where the agreement can be 
seen to be very encouraging for each of the triad of 
Cartesian field components.  Although not shown, the 
agreement between the resulting phase patterns was 
equally encouraging with only very minor differences 
being evident which result from the slightly different 
phase origins that were used in the respective CEM 
simulations. 

 

 
Figure 2 – Nominally aligned OEWG (left), rotated 

OEWG (centre), re-aligned OEWG (right). 

 
Figure 3 – Nominally aligned OEWG (left), rotated 

OEWG (centre), re-aligned OEWG (right). 

 
Figure 4 – Nominally aligned OEWG (left), rotated 

OEWG (centre), re-aligned OEWG (right). 

 

4. Preliminary Measured Results 

The acquisition of the crucial antenna-to-range alignment 
data will vary from facility to facility.  Within a spherical 
system an optical alignment method is often employed 
[6].  Conversely, a planar facility may utilise a procedure 

that involves touching-off contact points on the antenna 
using a precision mechanical contacting probe [6].  
Unfortunately, in some cases, it is either not possible to 
acquire this information or it is not obtained with 
sufficient accuracy to be of very great use.  In instances 
such as these when in all other respects the measurements 
are sound, and it is merely the alignment that is 
questionable, it would be useful to be able to deduce the 
“idealised” alignment and plot the patterns taking into 
account all the changes in the pointing and polarisation of 
the pattern. 

Motivated by the requirement to demonstrate the validity 
of the alignment correction with spherical near-field 
antenna measurements (very encouraging results have 
previously been obtained for the case of planar near-field 
measurements [2, 6]), a simple genetic algorithm was 
developed which attempted to breed the optimum 
alignment information so that an imperfectly aligned 
antenna could be plotted as though the measurements had 
been taken with nominally idealised antenna-to-range 
alignment.  Figure 5 shows the NSI-700S-80 over-head 
scanning-arm spherical near-field measurement system 
together with the pyramidal horn antenna that was used as 
the AUT.  This antenna was selected as it is mechanically 
rigid, i.e. gravitationally insensitive, and had a low gain.  
The latter property equates to radiating significant field 
intensities at wide out angles that enables pattern 
comparisons to be performed over a larger portion of the 
forward half-space. 

 

 
Figure 5 – NSI-700S-80 Spherical near-field system 

testing X-band pyramidal horn. 



The near-field data was acquired and transformed to the 
far-field tabulated on a regular azimuth over elevation co-
ordinate system and resolved onto a Ludwig III copolar 
and cross-polar polarisation basis and can be seen 
presented in Figure 6. 

 
Figure 6 – Copolar (left) & cross-polar (right) far-field 

pattern of nominally aligned pyramidal horn. 

Some range multipath can be seen in these plots and is 
most likely a result of the close proximity of the 
electrically, comparitively, thin absorber which was used 
to cover certain parts of the system during this 
preliminary measurement campaign.  The pyramidal horn 
was removed from this system and a then reinstalled with 
an additional mounting bracket installed between the 
range (lower φ axis) positioner and the AUT.  This 
consisted to two aluminium wedges which were bolted 
together at 90° degrees as shown in Figure 7, which were 
intended to introduce a deliberate mispointing to the 
antenna-to-range alignment.  The near-field pattern of the 
horn was acquired and transformed to the far-field. 

 

 
Figure 7 – Alignment shims used to introduce 

a known AUT pointing. 

Here, the angle between the back and front face of the 
larger wedge was 5.14° and 2.38° for the smaller wedge.  
Using equation (2) the equivalent direction cosine matrix 
can be calculated thus allowing the alignment correction 
to be implemented.  In order that the proposed genetic 
optimiser could be verified, the alignment matrix was 
initialised as being the identity matrix.  Then, a series of 
small random rotations were applied and the resulting 
pattern compared with the reference set.  If the agreement 
improved, as determined by evaluating the SSD, this was 
deemed to be a sucessful generation and these rotations 
were kept.  Clearly, if the resulting patterns were in 

poorer agreement than its parents were, the previous set 
of rotations were retained as the basis for another 
generation.  This procedure can be found illustrated 
schematically in Figure 8. 
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Figure 8 – Schematic of alignment recovery algorithm. 

 
The sum-squared difference (SSD) between the respective 
far-field patterns was used as an error metric or penalty 
function (c.f. iterative near-field phase retrieval 
algorithms) within the genetic algorithm.  This is 
computed by summing the squared difference of the 
calculated modulus of the two pattern sets, i.e. |ui,j|, and 
|vi,j|, at each point (i,j) over the copolar and cross-polar 
patterns.  Mathematically, this can be expressed as 
follows, 
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There is nothing special about using the SSD between the 
patterns as a penalty function and many other measures of 
adjacency are available and could have been used instead, 
e.g. cross-correlation coefficient or ordinal measure of 
adjacency [2].  However, the SSD has the benefit of being 
comparatively computationally inexpensive and has 



proved to be relatively robust, yielding a useful measure 
of convergence.  As an example, a plot of the SSD for 
each successful generation can be seen in Figure 9. 
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Figure 9 – Plot of SSD showing convergence of genetic 

optimisation algorithm. 

Here, it can be seen that the iterative algorithm appears to 
have converged after breeding approximately 3500 
successful generations – only approximately one in four 
generations were deemed to represent a benefit over their 
antecedence.  When the algorithm was terminated, the 
value of the pair of angles was 4.9053° and 2.261°.  
Figure 10 contains the copolar and cross-polar far-field 
alignment corrected pattern obtained when this optimised 
alignment correction is used. 
 

 
Figure 10 – Copolar (left) & cross-polar (right) far-

field pattern of alignment corrected pyramidal horn. 

From inspection of Figure 6 and Figure 10, it is apparent 
that the agreement attained is encouraging, although some 
differences, mainly at wide angles and in the cross-polar 
pattern are evident.  Figure 11 contains an isolevel, i.e. 
contour, plot of the three far-field patterns.  Here, dotted 
contours are used to denote the nominally aligned pattern 
measurement, continuous black contours denote 
alignment corrected pattern using measured angles, and 
continuous grey contours are used to denote alignment 
corrected pattern data where the alignment angles were 
deduced using the genetic optimiser.  Here, the difference 
between the black and grey contours results from the 
differences in the alignment information used to correct 
these patterns.  Clearly, although the measured and 

reconstructed angular amounts differ from one another, 
their impact on the ensuing corrected far-field patterns is 
comparatively minor and probably sufficiently good for 
the intended purpose of pattern comparison. 
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Figure 11 – Comparison of boresight region 

of far-field copolar patterns. 

Interestingly, the sum-squared difference between the 
nominally aligned pattern and the alignment corrected 
pattern where the angular values were taken from 
measurements of the wedges was 0.0035=SSDξ , 
conversely when using the rotations obtained from the 
genetic algorithm 0.0034=SSDξ  and from inspection, it 
could be seen that the contours were, subjectively, in 
better alignment.  Despite some care being taken in the 
alignment of the “nominally” aligned measurement, it is 
possible that this measurement contained some slight 
imperfection in its alignment that would potentially 
explain this slight difference and which was borne out by 
the fact that the peak of the pattern was not precisely on 
boresight (the low gain, broad beam pattern of the AUT 
can make exact determination of the peak of the pattern 
challenging as, for example, it can easily be disturbed by 
spurious noise on in the measurement, e.g. range multiple 
reflections, etc.).  This multi-path also degraded the 
agreement attained at wide out pattern angles where 
signal levels are lower and gain slopes smaller. 
 

5. Summary and Conclusion 

The successful use of a genetic algorithm in recovering 
antenna-to-range alignment has been demonstrated.  It is 
important to recognise that this algorithm optimises the 
alignment of one measurement to another and yields 
patterns that are in “best” agreement, as determined by a 
measure of similarity, i.e. adjacency.  However, if the 



reference measurement set contains an imperfection in its 
alignment, then the recovered antenna-to-range alignment 
will also contain this same error within the determined 
values. 

Clearly, approximate methods such as those deployed 
herein can prove unreliable on occasion.  For example, 
the results may become inaccurate if used to correct very 
high gain antenna patterns where the underlying pattern 
function fluctuates rapidly with respect to the sampling 
interval.  Errors may also be encountered in regions of 
low signal levels where the presence of noise can disturb 
the interpolation, e.g. in pattern nulls.  Interpolation 
formulas tend to use several neighbouring points 
(sampling nodes) to approximate an interleaving point.  
Thus, although being suppressed localised noise will be 
“spread out” to any interpolated point using a noise 
contaminated sampling node.  However, for many cases 
where the rotation has been accomplished using 
approximation, rather than rigorous sampling theorem 
(i.e. Whittaker) interpolation, the results are usually 
sufficiently reliable for the purposes of visualisation, 
which indeed is the intent here. 

In conclusion, this paper has shown that a simple vector 
isometric rotation, employing an efficient polar 
implementation of a bi-cubic convolution interpolation 
algorithm, can be used to obtain reliable alignment 
corrected results that are in very close agreement with 
those results obtained by more intensive, rigorous means.  
Although it is always possible to choose a function that is 
sufficiently pathological to make a mockery of any 
interpolating procedure, in practice this implementation 
has been found to be comparatively robust.  Although the 
subject of ongoing research requiring further verification, 
a new alignment optimisation algorithm has been 
presented that enables relative alignment information to 
be deduced between pairs of far-field antenna patterns. 
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